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Abstract

To understand the driving of both meridional circulation and differential rotation in radiative envelopes of stars, one

has to solve for 3D mass, momentum, and energy conservation equations for a compressible gas in a central gravity

field. In this study, we propose a novel finite volume technique that uses Cartesian geometry thus reducing greatly the

complexity of spherical operators. The boundary conditions are efficiently imposed at the surface of the star using

the fictitious points technique. We use the anelastic approximation and the Poisson equation for pressure is solved by

the Jacobi method which preserves natural symmetries. We present analytical test cases of the fictitious domain

technique, and show our results of asymptotic circulation in a model with little stratification and a large viscosity.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Stellar astrophysics often has to consider matter in a state which is far from conditions that can be

reproduced on earth (extreme temperatures and pressures for example). As far as stellar hydrodynamics is

concerned, a process which has received a lot of attention from numerical studies is convection (see e.g.

[46]), where excessively large Rayleigh numbers can be encountered (RT � 1020). Since the early works

dating back to the mid-70s [17,26], both 2D and 3D studies have been performed by several authors (e.g.

[11,13,34,38,47] and references therein) and new phenomena usually appeared when an order of magnitude
was gained in terms of Rayleigh number. Some attention was also given to more local studies of magneto-

hydrodynamics (see e.g. [3,31,54]).

Even in stellar regions which are convectively stable, hydrodynamical processes must be present: shear

instabilities can occur in differentially rotating stars [5,14,45,61], gravity waves should appear below and

above convective regions [39], baroclinic instabilities may appear in several locations [16,19,25]. These are

of major importance to stellar models since redistribution of chemicals within the star greatly affects its
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subsequent evolution (see e.g. [43]). Here, we will concentrate on the ‘‘meridional circulation’’ in rotating

stars [12,59], which to our knowledge, only Clement [9] has attempted to model numerically in 2 or 3

dimensions.

Several authors tackled the problem of finding the exact shape of the circulation pattern for a given

rotation state [12,33,41,42,44,48,51,59], while others emphasized the effect of meridional circulation mainly

as a source of chemical mixing [7,29,30,49,62]. However, none of these fully took into account freely de-

veloping 3D movements, thus neglecting many features of the hydrodynamical processes involved. Kip-

penhahn [23] suggested that, when viscosity is lowered, an equilibrium circulation could not be reached and
that the resulting pattern would resemble more closely that of a random circulation, involving small scale

structures, a result criticized by Tassoul and Tassoul [52].

Meridional circulation actually arises from the mismatch between heat transport, which naturally tends

towards spherically symmetric, and the ellipsoidal structure of a rotating star [58]. In this problem, ge-

ometry is thus of utmost importance in order to satisfactorily represent reality. Furthermore, the discret-

ization of the computational domain should be able to cope with a non-spherical stellar surface which

depends on the distribution of angular momentum.

Cartesian grid methods are nowadays gaining in popularity (see [60] and references therein). Indeed, they
have the great advantage of using a simple structured grid, thus avoiding all the problems associated with

the generation and maintenance of body-conforming unstructured grids. Furthermore, the numerical

equations obtained retain their standard formulation. The challenge is then to properly enforce the

boundary conditions.

Several techniques have been developed, each presenting its own advantages; the contour method, in

which the interface is ‘‘diffuse’’ and followed through the resolution of an advection equation (e.g. [1]), flux

limiter for finite volume methods which are appropriate for Neumann type conditions (e.g. [6]) or sharp

interface methods (e.g. [57]). Mask methods have also been developed in order to allow the use of simple
spectral algorithms in arbitrary domains (e.g. [4]). In this paper, we will describe a fictitious boundary

technique, designed to allow preservation of the natural symmetries of the problem.

In Section 2, we present the time-dependent 3D anelastic compressible equations of our problem. We

then describe in Section 3 how to use fictitious points to represent the star�s surface using a Cartesian

coordinate system in spite of the stellar model ellipsoidal shape. The method is tested by solving the Poisson

equation in spherical geometry. Section 4 describes the discretization of the equations and a novel fourth-

order finite volume algorithm to solve them. Finally, in Section 5 we validate our approach by presenting

test cases of meridional circulation.

2. System of equations and geometry

We would like to solve the problem of thermal imbalance in rotating stars from first principles. We thus

begin our discussion with the full Navier–Stokes equations, expressing the conservation of mass

oq
ot

þ ~rr � q~ww
� �

¼ 0; ð1Þ

where q is the density and w the velocity in the rotating reference frame, and of momentum

o q~ww
� �
ot

þ ~rr � q~ww~ww
�

þ PI
¼
� s

¼
�
¼ q~gg � 2q~XX 	~ww� q~XX 	 ~XX

�
	~rr

�
¼ q~ggeff � 2q~XX 	~ww; ð2Þ

where ~ww~ww is the velocity dyad, P is the pressure, I
¼
the identity tensor, s

¼
the viscous tensor, ~gg the local

gravitational acceleration, ~XX ¼ X~eez the rotation velocity of the reference frame and ~ggeff is the effective
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gravity (which takes into account the centrifugal acceleration). Those equations are written in a rotating

frame of reference and the total velocity ~uu is expressed by

~uu ¼ ~XX 	~rr þ~ww ð3Þ

(~XX is also the star�s initial, solid body, angular velocity).

The next equation, namely that of energy, is of utmost importance. Indeed, it is the thermal imbalance of

the rotating star which is the driving term here [12,59], and that must be incorporated with great care in the
code. This imbalance has generally been expressed analytically in terms of specific entropy s
[12,33,48,51,59,62], and it is the formulation we will be using here

qT
os
ot

þ qT ~rrs �~ww ¼ s
¼ � ~rr

� �
�~wwþ ~rr � v ~rrT

� �
; ð4Þ

where T is the temperature and v, the thermal conductivity.

The equation for the evolution of momentum includes the viscous tensor

sij ¼ qm oiwj

��
þ ojwi

�
� 2

3
~rr �~ww

� �
dij

�
; ð5Þ

assuming a Newtonian fluid. Furthermore, closure of the system of equations requires an equation of state

P ¼ R

l
qT ; ð6Þ

where R ¼ 8:31	 107erg=K=g is the universal gas constant and l, the mean molecular weight, as well as a

relation between entropy and other state variables

s ¼ cp ln
T
P 2=5

� �
; ð7Þ

where cp is the specific heat. This relation is strictly valid up to an additive constant and for a monatomic

perfect gas.

2.1. Time-scales and typical stellar values

Estimates of typical stellar values for the simulation�s main physical parameters are given in Table 1.

They correspond to conditions in the radiative region of a 2.2 solar mass star [8]; in such a model only the

inner 10% in radius is convective, the rest being in radiative equilibrium.

There are a number of time-scales associated with the physical processes to be described:

• Dynamical time-scale. The dynamical (or free-fall) time-scale is the typical time over which a (dynami-

cally stable) star reacts, via pressure waves, to a perturbation of its hydrostatic equilibrium. It is calcu-

lated using the free-fall time of a particle over a distance R in a (constant) gravity field of magnitude gs

tff ¼
R
gs

� �1=2

¼ R3

GM

� �1=2

’ 4000s: ð8Þ

• Kelvin–Helmholtz time-scale. The thermal (or Kelvin–Helmholtz) time-scale measures the time it would

take to empty the star of its thermal content, given its current luminosity

tKH ¼ qcpTR3

L
’ 3	 1012 s: ð9Þ
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• Eddington–Sweet time-scale. The meridional circulation (or Eddington–Sweet) time-scale is calculated

using the fraction of the thermal energy that is in imbalance (cf. [48]), namely

tES ¼
tKH

A
¼ tKHgs

X2R
’ 3	 1013–3	 1017 s ð10Þ

for the fastest and the slowest rotators, respectively (the oblateness A will be introduced in Section 2.3).

• Nuclear time-scale. This time-scale evaluates the duration of the main sequence, the central hydrogen

burning (and longest) evolutionary stage. It is related to the energy released by converting 1H to 4He.
That reaction releases Q ¼ 6:3	 1018 erg=g leading to

tn ¼
En

L
¼ QM

L
’ 5	 1018 s: ð11Þ

• Rotational time-scale. The relevant time-scale is the rotational period

trot ¼
1

X
’ 104–106 s: ð12Þ

We observe the important hierarchy

tn � tES � tff : ð13Þ

It is thus possible to neglect nuclear transformations while studying the dynamics of large scale circulation.

The case of pressure waves is however trickier, and will be discussed in the next section.

2.2. Anelastic approximation

Pressure waves are of fundamental importance in re-adjusting the system against perturbations. How-

ever, when using an explicit code as we shall be doing, the stability criterion requires that the time-step be

small enough to describe those waves. In our case, this would severely constrain the numerics. Thus we need
to consider a different system of equations in which the pressure waves are filtered out, and where the

system is actually always ‘‘adjusted’’ against perturbations.

Several authors have performed formal developments of such an anelastic approximation [18,20,26,35],

which may be heuristically understood as the result of using an infinite sound speed cs in the mass equation.

Indeed, we have (from Eq. (1))

Table 1

Typical values for a 2.2 solar masses stellar model; T , P , and q are in the middle of the radiative region

Quantity Typical value

q 0:1g=cm3

T 3	 106K

s cp ’ 3	 108 erg=K=g

R 1:5	 1011 cm

M 4	 1033 g

L 1035 erg=s

g gs ¼ ðGM=R2Þ ’ 104 cm=s2

m 2	 102 cm2=s

v 2	 1016 erg=cm=K=s

P 5	 1013 dyne

X 10�6–10�4 s
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oq
ot

¼ 1

c2s

oP
ot

¼ � ~rr � q~ww
� �

; ð14Þ

where we used c2s ¼ cP=q and c ¼ oP=oqjs. Taking the divergence of a simplified momentum equation

(cf. Eq. (2)) involving only the pressure forces

o

ot
~rr � q~ww

� �
þr2P ¼ 0

and introducing it into the time derivative of (14) leads to the pressure wave equation

1

c2s

o2P
ot2

¼ r2P :

Formally, this approximation also involves the linearization of the equations about a reference state

q ! q0 þ q;

where q0 refers to the reference profile and q, to the perturbation. In our case, the reference state will be a

Roche model (see Section 4.3) which will also be used for pressure and temperature. In order to filter out

pressure waves and limit the problem to the reference state, the mass conservation equation (1) is thus

replaced by the anelastic condition

~rr � q0~ww
� �

¼ 0:

One of the numerical challenges will be to ensure that the latter condition is satisfied everywhere in the
interior at all times (see Section 2.4).

Pressure waves are not the only physical processes occurring on a dynamical time-scale. Several dy-

namical instabilities, like shear instabilities for example, occur on similar time-scales. We will describe their

treatment in the following section.

2.3. Dimensionless equations

The next step is to write dimensionless equations. We chose the dimensions given in Table 2, based on

the use of a dynamical velocity.

Table 2

Scaling and characteristic numbers

w ! ðR=tffÞw
r ! Rr
t ! tff t
g ! ðGM=R2Þg
s ! cps
q ! q
q
P ! q
ðGM=RÞP
T ! ðGM=RÞðl=RÞT ¼ T 
T
m ! m
m
v ! ðL=ð4pRT 
ÞÞv

ðX2R3Þ=GM ! A

ðGM=RÞ1=2ðR=m
Þ ! Re
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This scaling leads to the system of equations

~rr � q0~ww
� �

¼ 0; ð15Þ

oðq0~wwÞ
ot

þ ~rr � q0~ww~ww
�

þ PI
¼
� 1

Re
s
¼
�

¼ q~ggeff �A1=2q0~eez 	~ww; ð16Þ

q0T0
os
ot

þ q0T0 ~rrs �~ww ¼ m


T 
cptff
s
¼ � ~rr

� �
~wwþ tff

tKH

~rr � v ~rr T0½
�

þ T �
�
; ð17Þ

where ~ggeff ¼ g ~eer þA-~ee-ð Þ, -2 ¼ x2 þ y2, and -~ee- ¼ ðx~eex þ y~eeyÞ. In these equations, we also introduced

non-dimensional numbers characterizing the problem, like the oblateness A which measures the ratio of

centrifugal force to gravity and the Reynolds number, Re, characterizing the viscosity in comparison to the

scaling velocity and length scale.
Once the equations are put in a dimensionless form using dynamical (cf. Eq. (8)) and thermal (cf. Eq. (9))

time-scales, we will lengthen the dynamical time-scale in order to be able to simulate both thermal and

dynamical instabilities at the same time. This is done by increasing the ratio tff=tKH in the heat equation (17)

and actually corresponds to increasing the star�s luminosity. This will enhance meridional circulation as

well as its corresponding differential rotation.

2.4. Pressure perturbation

In our system of equations, we replaced a prognostic (i.e.time-dependent) equation expressing mass

conservation by a diagnostic (i.e., time-independent) equation, the anelastic condition. It is an important

numerical problem to ensure that this condition is satisfied everywhere in the fluid. That is done through the

calculation of pressure via a Poisson equation, obtained by combining the divergence of the momentum

equation (16) with the anelastic condition (15). Thus we evaluate the pressure field that will allow the non-
divergence of momentum to be preserved

r2P ¼ �oioj q0wiwj

� �
þ m
Re

oiojsij þ oi qgeff ið Þ þA1=2 ox q0wy

� �	
� oy q0wxð Þ



: ð18Þ

That equation is solved using a Jacobi method [40] combined with our fictitious point method for the

boundary conditions (see Section 3). The basic idea behind Jacobi type methods consists in replacing the

elliptic problem

r2P ¼ q ð19Þ

by a pseudo-time (f) dependent problem

oP
of

¼ r2P � q: ð20Þ

When convergence to a constant pressure field is reached, the elliptic problem (19) is solved. In the Jacobi

method, the equation is treated explicitly and the selected time-step is the maximum stable step size as given

by the CFL condition.

A number of methods have been tried but found less desirable than the Jacobi method. The Gauss–
Seidel method,1 which theoretically converges about twice as rapidly as the former [40], is inappropriate in

1 In the Gauss–Seidel method, values of P are updated in the r.h.s. calculation as soon as they are available.
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our problem for two reasons. Firstly, it does not preserve inherent symmetries. Secondly, due to the ir-

regularity of the boundaries, boundary values depend on each other (see Section 3 for more details); if they

are updated only at the end of the loop over grid points, our tests show that the Gauss–Seidel method then

converges more slowly than the Jacobi method. On the other hand, calculating boundary values within the

spatial loop impedes efficient parallelization.

Another scheme which could be used is the ‘‘odd–even’’ separation of the loops,2 with ‘‘in place’’ up-

dating, as in the Gauss–Seidel method. This method has the same theoretical convergence as the Gauss–

Seidel algorithm, but does preserve symmetries. However, to obtain this rapid convergence, boundary
conditions must be applied after each of the eight separate loops; since the tri-linear interpolations involved

in the computation of the boundary conditions on the fictitious domain are rather time consuming (see

below), that method will be more efficient than the Jacobi algorithm only below a certain surface=volume

ratio, corresponding to a rather large problem (J 5123 grid points for our stellar case).

Finally, even though the Jacobi method is known to converge rather slowly [40], since pressure is up-

dated at each time-step, it is expected that relatively few (pseudo-time) iterations will be needed, considering

that the density and velocity fields evolve slowly with time.

The Poisson equation can also be solved more rapidly using FFTs (see e.g. [27]). However, such a
treatment amplifies the importance of the privileged directions along the x, y, and z axes, and, even for the

laminar flows we are testing here, axial symmetry would be lost (see Fig. 7).

3. The stars surface as an internal boundary

Several authors have discussed the advantage of using a regular Cartesian grid to perform numerical

simulations involving irregular geometries (see [32]). Equations are then easily discretized, in a way which is
problem independent. However, one then has to make the system of equations compliant with complex

boundaries.

In many cases, the boundary conditions used are of ‘‘no flux’’ type. The problem is then dealt with by

imposing a different volume and center of mass to boundary cells (see e.g., the recent contribution of

Calhoun and LeVeque [6]).

In the present numerical simulation however, we must be able to apply a variety of boundary conditions.

We first discuss the boundary condition for pressure (Section 3.1) and then, for the velocity field

(Section 3.2).

3.1. Neumann or Dirichlet boundary condition

On the Poisson equation, we want to apply the Neumann condition (o~nnP ¼ 0). In order to perform that
calculation, one must first locate the position of the surface (squares in Fig. 1) and determine its normal.

In our fictitious point approach, we first identify all points that are inside the star (filled circles in Fig. 1).

Then, to each boundary point (open circles), we associate a fictitious point (for a typical 643 simulation,

the fictitious points are shown in Fig. 2), which is the boundary point�s normal projection (defined by ~rrU)

on the surface equipotential (see Section 4.3). The value of the physical variable at the grid point is then

calculated using a tri-linear, Oðdx1Þ, interpolation so that the desired condition is satisfied at the corre-

sponding fictitious point. Since such an interpolation may require the use of other points which are

actually outside the star, care must be taken to perform the interpolations in the correct sequence (see
Figs. 1 and 3).

2 Here, the single 3D-spatial loop is replaced by eight loops, odd and even points in each direction being treated separately.
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3.1.1. A test case: solving the Poisson equation

As a test of the fictitious point method, we first solve the equation

r2P ¼ q ¼ r2ðcos rÞ ¼ � 2

r
sin r � cos r ð21Þ

Fig. 1. Illustration of the concept of fictitious points. Filled circles are in the stellar interior while open ones are the boundary points,

calculated via a tri-linear (in 3D) interpolation to comply with the required boundary conditions at the fictitious points on the star�s
surface (squares). Crosses are not used. Point A is calculated using points labeled a and point B, those labeled b. Note that some of

these points are themselves boundary points and need to be calculated before point B.

Fig. 2. Fictitious points used for the 643 simulation.
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in a hollow sphere with r 2 ½p; 4p� and homogeneous Neumann condition, and then

r2P ¼ q ¼ r2ðsin rÞ ¼ 2

r
cos r � sin r ð22Þ

over the same domain but this time with homogeneous Dirichlet boundary condition. For both problems,

the fictitious point method (hereafter FP) is compared to a simple ‘‘staircase’’ method, in which boundary

conditions are applied to the irregular boundary with no interpolation, as would be done on a regular

domain. The initial condition is taken to be n 	 cos r in the first simulation (or n 	 sin r in the second

simulation) where n is a random real number 2 0; 1½ � changing at each grid point.

Fig. 4 shows the evolution of the mean error hei

hei ¼ 1

N

XN
i¼1

P exact
i

�� � P num
i

��; ð23Þ

where N is the number of points inside the hollow sphere. Results are for 643 grid points. This graph shows

that the use of the fictitious point method leads to smaller errors than the staircase method. Furthermore,

the mean error hei then remains closer to its minimum value as iterations are performed beyond the optimal

number of steps leading to hei ¼ heimin.

Fig. 4. Evolution of the mean error (Eq. (23)) for two different boundary conditions, Dirichlet and Neumann, and two different

methods, the fictitious points method (FP) and the ‘‘staircase’’ method.

Fig. 3. Illustration of the importance of the order of bi-linear interpolations. Border point numbers illustrate the order in which the

interpolations must proceed while the arrows indicates the 3 points used for the interpolation.
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Fig. 5 shows the resulting profile at the equator corresponding to the minimum error (i.e., the smallest

mean error as defined by Eq. (23)) in all four cases. The larger error in the case of the Neumann condition can

be attributed to the fact that the Poisson equation involves only second derivatives of the unknown function.

The Dirichlet boundary condition completely defines the solution, whereas the Neumann condition defines it

only up to a constant, thus leading to a larger error on the absolute value. In this numerical example, the

constant was fixed by forcing the pressure to have zero mean. In the physical problem, it is the pressure

gradient that is required for the momentum equation; however, via the equation of state, the pressure�s
amplitude will change the density, and we thus adjust the additive constant to conserve mass. The fact that
the boundary condition is applied only at Oðdx1Þ as is done usually to damp oscillations [37] tends to smooth

the border too rapidly, thus causing a larger absolute error. Fig. 6 shows the evolution of the minimum error

in all four cases as a function of resolution. The error on the FP-Dirichlet solution decays at Oðdx2Þ, as
expected for the standard Jacobi method, even though the boundary condition is applied at Oðdx1Þ. It is not
the case however for the FP-Neumann solution, nor for both ‘‘stairs’’ solutions, which converge at Oðdx1Þ.

Another important property is the influence of the boundary condition on the symmetry of the solution.

Indeed, the grid contains preferred transport directions, which leads to some limitations in the use of

Cartesian methods (for example, the azimuthal component cannot be described accurately in 643 if its
magnitude is less than about a tenth of the meridional components). The boundary conditions will also

influence the solution�s symmetry, and must be introduced so as to minimize their impact. In Fig. 7, we give

a measure of the resultant symmetry by comparing the azimuthal average of the pressure field and its value

in the / ¼ 0 plane. We define a root mean square deviation r

r ¼ 1

N

XN
i¼1

Pðr; h;/Þ/
h(

� P ðr; h; 0Þ
i2)1=2

; ð24Þ

where the sum is made on all (N ) interior point, and r, h, / are the spherical coordinates. The advantage of

the fictitious point method for the Neumann condition is more obvious here.

Fig. 5. Solution profile corresponding to the smallest error; left: Neumann boundary condition; right: Dirichlet boundary condition;

top: solution; bottom: error. The solid line is the exact function, the dashed line is the FP solution and the long-dashed line the ‘‘stairs’’

solution.
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3.1.2. A multi-grid approach?

The Jacobi and other related methods on Cartesian meshes can be sped up by using multi-grid algo-

rithms in which lower resolution grids are used alternately with higher resolution ones (see e.g. [10]).

Convergence is then much faster unless small scale structure is clearly dominant.

In our problem with fictitious points however, that method is not straightforward. Indeed, the ability to
apply the boundary condition at each iteration is of great importance in the convergence process. Con-

trarily to the case of a rectangular domain in which boundary cells do not change in the multi-grid process

(provided the resolution is properly chosen), in our stellar problem with ellipsoidal geometry they change

for each grid.

Since after some tests they were found to give quite unsatisfactory results, multi-grid methods will not be

further discussed here.

Fig. 6. Minimum mean error at various resolution. Crosses are for ‘‘stairs’’-Neumann, squares for FP-Neumann, stars for ‘‘stairs’’-

Dirichlet, and triangles for FP-Dirichlet. Dots are results obtained via FFTs for the Neumann condition.

Fig. 7. Root mean square deviation between the solution�s azimuthal average and the / ¼ 0 plane value (Eq. (24)). Crosses are for the

staircase solution and squares for the FP case. Triangles are the values obtained when the exact value is used on grid points, giving a

measure of the part of the error due to the linear interpolations performed in the calculation of r. Dots are results obtained via FFTs.

254 S. Talon et al. / Journal of Computational Physics 184 (2003) 244–265



3.2. Stress-free boundary conditions

As already mentioned, boundary conditions on the velocity field ~ww must be applied at the star�s surface.
The first condition is that the normal component must vanish on the star�s surface

~ww �~nn ¼ 0; ð25Þ

where~nn is the normal vector. One must also apply the so-called stress-free boundary condition [50] which

states that the normal component of the stress-tensor must vanish or

ð~nn � s¼Þ �~tti ¼ 0; ð26Þ

where~tti denotes any vector tangential to the surface. Selecting two perpendicular vectors suffices to ensure

that this condition is satisfied for any tangential vector.3 Taking (25) into account, (26) is equivalent to

o~nn ~ww �~tti
� �

¼ 0; ð27Þ

where o~nn denotes the normal derivative. Eq. (25) together with (27) for i ¼ 1; 2 leads to three equations, for

the three components of the velocity field.

Tests of the validity of the approach will be presented with the preliminary results (Section 5).

4. Finite volume discretization and program algorithm

In our Navier–Stokes solver we consider that only the perturbations, which are assumed small, change

with time. The time-dependent parts of equations (16) and (17) are then discretized using a cell-centered

finite volume method [22]. In this method, the evolution of the average value over a control volume V of a

quantity x is calculated using its flux integrated over the bounding surfaceS ofV, plus its volume variation

integrated over V (see Fig. 8). We get the system of equationsZ
V

oðq0~wwÞ
ot

dV ¼
Z
S

� q0~ww~ww
�

þ PI
¼
� m
Re

s
¼
�
� d~SSþ

Z
V

q~ggeff
�

�A1=2q0~eez 	~ww
�
dV; ð28Þ

Z
V

q0

os
ot

dV ¼
Z
S

�q0 s0½ þ s�~ww � d~SSþ 1

hT0i
tff
tKH

Z
S

v ~rr T0½ þ T � � d~SSþ 1

hT0i
m


T 
cptff

Z
V

s
¼ � ~rr

� �
�~wwdV:

ð29Þ

The advantage of the finite volume method is that we are dealing directly with the fluxes at the cell in-

terfaces thus ensuring conservation of the relevant physical quantities. We are dealing with two ‘‘spaces,’’

which we call the volume space, in which the average values are given, and the mesh space, for those on the

mesh points (cf. Fig. 8). The volume space is the one in which equations are solved, while fluxes are cal-

culated and boundary conditions applied in the mesh space.

4.1. From volume to mesh space: reconstruction

The transformation from volume to mesh space is done by using the definition of integrals and deriv-

atives. The concept is easy to illustrate with a 1D example [22,28]. Assuming that the volume (or mean)

3 In order to further reduce the importance of preferred directions, we choose the first tangential vector~tt1 along a meridional plane,

the second being just~tt2 ¼~tt1 	~nn.
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value of some variable f within each cell is known exactly, one can evaluate the exact integral at the mesh

pointsZ xi

0

f dx ¼
Xi�1

I¼0

FIDx; ð30Þ

where volume values are designated with capital letters and mesh values with small ones (see also Fig. 9).

This is called reconstruction via primitive variables [28]. Then, the mesh value is given by the derivative of

the integral

fi ¼
d

dx

Z
f dx

� �
i

¼ d

dx

X
FIDx

h i
i
; ð31Þ

which can be evaluated using a finite difference approach of desired accuracy.

4.2. From mesh to volume space: averaging

The opposite transformation consists of calculating the volume value from those on the mesh. One must

first compute the interpolating polynomial (of a given accuracy) fitting the mesh points and then, calculate

the analytic integral of that polynomial. A second-order approach leads to the simple expression

FI ¼
1

2
fið þ fiþ1Þ ð32Þ

while a fourth-order formulation gives

FI ¼
1

14
ð � fi�1 þ 8fi þ 8fiþ1 � fiþ2Þ: ð33Þ

Going from 1D to 3D requires repeating the procedure once in each direction.

Fig. 8. Illustration of mesh points, of a control volume (hatched) and its surface (dotted line) in 2D.

Fig. 9. Numbering control volumes (‘‘I’’) and mesh points (‘‘i’’) in 2D.
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4.3. Reference state

In our problem, the anelastic approximation requires the use of a reference profile [20], variable x being
expressed as the sum of a mean value x0 plus a perturbation x.

We chose as reference state a ‘‘point mass star’’4 in solid body rotation. The equipotential U is then given

by the Roche potential (see e.g. [24])

U ¼ H
1

r

�
þA-2

�
; ð34Þ

where H is a constant fixed by the requirement to reproduce gravity. The stellar structure equations

1

q0

~rrP0 ¼ ~rrU ¼~ggeff and v ~rrT0 ¼ L~nn; ð35Þ

where~nn is the unit vector perpendicular to the local equipotential, are then solved for the barotropic model.
In such a model, the divergence of the heat flux is non-zero, giving rise to meridional circulation. This

divergence is computed using an analytical formulation valid for solid body rotation and in the point mass

star approximation. In non-dimensional units, we get (cf. [21,36,48])

~rr � v ~rrT0
� �

¼ tff
tKH

2q0r
3 R3

q
M
egg
g
P2ðcos hÞ ¼ tff

tKH

8q0r
3

3

R3

q
M
AP2ðcos hÞ; ð36Þ

where P2ðcos hÞ is a Legendre polynomial and ðegg=gÞP2ðcos hÞ represents the latitudinal gravity fluctuation
on the equipotential.

4.4. Algorithm

We then deal with the evaluation of the volume value of selected variables, namely the entropy s and the

velocity ~ww. We also include the transport of a non-reactive tracer to illustrate the circulation�s cumulative

effect. The time integration is done using an explicit second-order Adams–Bashforth scheme, for which the

evolution of a quantity x is given with respect to the explicit net variation at two different time-steps

xtþDt � xt ¼ Dt � 1:5Ft
�

� 0:5Ft�Dt
�
; ð37Þ

whereFDt expresses the net variation of a volume quantity within a cell, which is calculated using Eqs. (28)

and (29).

The code�s algorithm is as follows:

1. Construction of the reference model, corresponding to a uniformly rotating star (cf. Section 4.3), in-

cluding calculation of the source term:

tff
tKH

Z
V

~rr � v ~rrT0
� �

dV ð38Þ

(this would be zero in a non-rotating star).

2. Localization of the surface, classification of points (inner points, border points, and exterior points),

and calculation of the tri-linear interpolation coefficients on the fictitious points (cf. Section 3).

3. Initialization to zero of all perturbation variables.

4. Time loop

4 In the ‘‘point mass star’’ approximation one assumes in defining the potential that the mass in concentrated at the center.
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(a) Evaluate mesh values for entropy and velocity fields.

(b) Calculate corrections to the mesh velocity field to re-enforce the anelastic condition,5 by solving an

equation for a pressure correction /

r2/ ¼
~rr � q0~ww

� �


dt
: ð39Þ

The total pressure perturbation is then given by

P ! P þ /; ð40Þ

and the momentum field becomes

q0wi
!¼ q0wi

!� �

� o/
oxi

dt: ð41Þ

(c) Apply boundary conditions to mesh fields.

(d) Make a cell average using (33), to convey the boundary conditions and velocity corrections to the
volume fields.

(e) Update the pressure perturbation, using (18), and the corresponding temperature and density fields,

imposing mass conservation.

(f) Calculate the net variation Ft of entropy and velocity fields using (28) and (29).

(g) Update entropy and velocity fields using a second-order Adams–Bashforth scheme (cf. Eq. (37)).

(h) Output at given time-steps.

5. Validation of approach

We present results obtained with a test simulation using 643 points. We simulated 1/8th of the star,

assuming symmetry about the equator and re-injecting the outgoing flow from the y ¼ 0 plane (or in

spherical coordinates the / ¼ 0 plane) into the x ¼ 0 plane. The exact parameters used for the simulation

are given in Table 3. The shape of the star as well as the source term are realistic, while viscosity is greatly

overestimated, and stratification is underestimated.

The key to meridional circulation is the source term, coming from the divergence of the radiative flux. It
has been known for quite a long time that a star in solid rotation cannot achieve thermal equilibrium thus

leading to sinks and sources of heat [58]. This source term is shown in Fig. 10 for our model star. In a

realistic star covering several scale heights, close to the surface there would be a reversal of the sink and

source. Gratton [21] and €OOpik [36] have suggested this could lead to a reversed circulation cell. Such a

feature cannot appear in this preliminary study, as it requires a higher resolution, a lower viscosity and a

more pronounced stratification to resolve it numerically.

In this viscous simulation, an equilibrium state was reached after � 4tKH starting from a fluid in solid

body rotation and no meridional flow. The equilibrium characteristics are illustrated in Figs. 11–13. Fig. 11
shows the resulting circulation velocity, which here consists of only one large cell. One can notice that the

velocities rising along the pole are larger than those sinking along the equator, as required by mass con-

servation. Meridional circulation has a ‘‘turn around’’ time-scale of �5tKH whereas the mean rotational

period6 is about 0:6tKH.

5 The pressure is calculated using the momentum at time t � dt and, in general, the updated momentum field does not satisfy the

anelastic condition. We thus ‘‘correct’’ the pressure and the momentum field accordingly (see e.g. [15]).
6 In a realistic model, the dynamical (and hence rotational) time-scale would be much smaller.

258 S. Talon et al. / Journal of Computational Physics 184 (2003) 244–265



Fig. 12 illustrates the main contributions (integrated over one cell) to the equilibrium of the heat

equation (29). On the r.h.s. of that equation, one has first the advection term (a), followed by the heat
diffusion term, which here has been separated into the source term (b), corresponding to a barotropic star in

Fig. 10. Source term (¼ ~rr �~FFradiative) of the meridional circulation used in the simulation. Light and dark areas have, respectively,

positive and negative divergence.

Table 3

Parameters used in the simulation

Parameter Value

Re 10

A 0:03

tff=tKH 0:1

Pbottom=Ptop 1:5

Fig. 11. Equilibrium circulation velocity. Black arrows are streamlines; the length of grey arrows is proportional to local velocity.

Close to the center of the circulation cell, the period required to perform one complete revolution is �4tKH, and it increases up to

�11tKH in the outer part.
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solid body rotation, plus the contribution of the temperature perturbation (c). The last term represents heat

generation related to viscosity and is much smaller than the previous ones in regimes relevant to the stellar

case; it is not shown here.

In Fig. 13 we compare the contributions of various terms to the x-momentum equation (28). In the

equilibrium state, the viscous transport (b, and 3rd r.h.s. of (28)) is balanced by a re-adjustment of the

gravitational equilibrium (a and sum of 2nd and 4th r.h.s.). The advection term (c, 1st r.h.s.), next in

magnitude, has been increased by 100 to be visible on this scale. The Coriolis term (5th r.h.s.) yields only a

minor contribution to the final equilibrium reached in this simulation.
Finally, Fig. 14 shows the resulting differential rotation. Its magnitude is rather small, being about one

hundredth of the meridional velocities, which is consistent with the large viscosities used in this preliminary

simulation and with the fact that the Coriolis term does not contribute significantly to the equilibrium of

Eq. (28). We expect this to change as viscosity is reduced to more realistic values. Indeed, a lower viscosity

implies a larger differential rotation to get the same viscous transport. It could thus lead to the appearance

of various dynamical instabilities (like e.g., the Kelvin–Helmholtz instability). The increase of stellar lu-

minosity (or tff=tKH) should help resolve both relevant time-scales simultaneously.

In Fig. 15, we show a comparison for the x component of the velocity field of the 643 and the 1283

solutions. All fields correspond equally well at those two resolutions, an indication that we included enough

spatial resolution for the problem, and that our numerical algorithm converges.

Fig. 12. Integrated contribution of various terms to the equilibrium heat flux in the / ¼ 0 plane (cf. Eq. (29)). (a) Advection;

(b) reference temperature; and (c) temperature perturbation (see text). White refers to positive and black to negative values.

Fig. 13. Integrated contribution of major terms to the equilibrium x-momentum flux in the / ¼ 0 plane (cf. Eq. (28)).

(a) Gravity+ pressure; (b) viscosity; (c) advection (100	) (see text). White refers to positive and black to negative values.
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As a test, we artificially increased the Coriolis force by 1000; the resulting pattern changes significantly

(cf. Figs. 16 and 17). The main circulation cell is broken into two and streamlines become more cylindrical;

that is the expected effect of the Coriolis force, as stated by the Taylor–Proudman theorem (ov=oz ¼ 0, [55]).

That theorem applies if the Rossby number (Ro ¼ Finertia=FCoriolis) and the Ekman number

(Ek ¼ Fviscous=FCoriolis) are small enough (cf. [2]), as well as the Froude number (Fr ¼ w2=ðgRÞ).7 Here, we

have Ro � 10�5 and Ek � 10�2 everywhere in the domain, while we had Ro � 102 and Ek � 105 previously.

The horizontal movements are favored by the Coriolis force, and the equilibrium differential rotation is

Fig. 14. Lines of constant azimuthal velocity (v/) in a meridional plane, corresponding to the equilibrium differential rotation in the

star. Minimum and maximum values are �9	 10�6R=tKH and 4	 10�5R=tKH, respectively, and they are about two orders of magnitude

smaller than the meridional components. White refers to positive and black to negative values.

Fig. 15. Equilibrium x velocity field (vx) in the / ¼ 0 plane at two resolution (full line: 1283, dashed line: 643). The good agreement

between the two solutions is an indication that, for the considered parameters, the solution is resolved at 643.

7 When stratification is important, the Taylor–Proudman theorem is replaced by the thermal wind equilibrium
ov
oz

¼ g
2X sin hT

ez
!	 ~rrT :
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now larger than the meridional streaming. Smaller increases of the Coriolis force do enhance differential

rotation, but do not produce splitting of the main cell (not shown). The final situation is characteristic of

the geostrophic equilibrium in which the balance is between Coriolis acceleration and pressure fluctuations

(see Fig. 18).

6. Discussion

In this paper, we presented the numerical approach developed to study the dynamics associated with

meridional circulation in stars. We showed that our fictitious point method for boundary conditions yields

Fig. 16. Equilibrium circulation velocity when Coriolis acceleration is increased by 1000. Black arrows are streamlines; the length of

grey arrows is proportional to local velocity. Circulation in the main cell is much faster then in the smaller outer cell. Periods to

accomplish a complete revolution go from �8tKH to �55tKH towards the exterior of the main cell, while it ranges from �100tKH to

�250tKH in the outer cell.

Fig. 17. Lines of constant azimuthal velocity (v/) in a meridional plane, corresponding to the equilibrium differential rotation in the

star when Coriolis acceleration is increased by 1000. Minimum and maximum values are �2:4	 10�3R=tKH and 5	 10�3R=tKH, re-

spectively, and they are about 50% larger than the meridional components. White refers to positive and black to negative values.
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satisfactory results in a test case of the Poisson equation, and presented preliminary results of large scale

circulation.

We want to emphasize the advantage of using equally spaced Cartesian grids over the classical methods.

The discrete set of equations obtained retains a simpler form than it would have in spherical coordinates,

and we do not encounter small cells in the center of the grid. We also do not need to retain knowledge of the

connectivity between cells, as one would in an un-structured grid. The main concern is that of producing
flows that follow the imbedded surface properly, and this preliminary study confirms the correct behavior

of the flows. Our results further show that we get good azimuthal symmetry given our choice of tangential

vectors.

Another important property is the stability of the algorithm. In this test case, where a large viscosity is

used, we find that the solution remains laminar at all times, and relaxes to the main circulation cell pre-

sented in Fig. 11 from any initial condition (as long as the CFL condition is not violated); there is no other

stable equilibrium.

The next step is to come closer to conditions relevant for stellar evolution. We will first compare our
results with those of theoretical models [51,53,62] in an appropriate regime. To do so, we must increase the

stratification of the model and thus, the resolution. We can also assess the role of transients in the es-

tablishment of an equilibrium and study the effect of the circulation on the redistribution of chemicals.
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